• About
  • Get Started
  • Guides
  • Developers
    • ValidMind Library
    • Supported Models
    • QuickStart Notebook

    • TESTING
    • Run Tests & Test Suites
    • Test Descriptions
    • Test Sandbox (BETA)

    • CODE SAMPLES
    • All Code Samples · LLM · NLP · Time Series · Etc.
    • Download Code Samples · notebooks.zip
    • Try it on JupyterHub

    • REFERENCE
    • ValidMind Library API
  • Support
  • Training
  • validmind.com
  • Documentation
    • About ​ValidMind
    • Get Started
    • Guides
    • Support

    • Developers
    • ValidMind Library

    • ValidMind Academy
    • Training Courses

    • validmind.com
  • Training
    • ValidMind Academy

    • Fundamentals
    • For Administrators
    • For Developers
    • For Validators
  • Log In
    • Public Internet
    • ValidMind Platform · US1
    • ValidMind Platform · CA1

    • Private Link
    • Virtual Private ValidMind (VPV)

    • Which login should I use?
  1. tests
  2. data_validation
  3. ScatterPlot

EU AI Act Compliance — Read our original regulation brief on how the EU AI Act aims to balance innovation with safety and accountability, setting standards for responsible AI use

  • ValidMind Library

  • Python API
  • 2.8.12
  • init
  • init_dataset
  • init_model
  • init_r_model
  • get_test_suite
  • log_metric
  • preview_template
  • print_env
  • reload
  • run_documentation_tests
  • run_test_suite
  • tags
  • tasks
  • test
  • RawData
    • RawData
    • inspect
    • serialize

  • Submodules
  • __version__
  • datasets
    • classification
      • customer_churn
      • taiwan_credit
    • credit_risk
      • lending_club
      • lending_club_bias
    • nlp
      • cnn_dailymail
      • twitter_covid_19
    • regression
      • fred
      • lending_club
  • errors
  • test_suites
    • classifier
    • cluster
    • embeddings
    • llm
    • nlp
    • parameters_optimization
    • regression
    • statsmodels_timeseries
    • summarization
    • tabular_datasets
    • text_data
    • time_series
  • tests
    • data_validation
      • ACFandPACFPlot
      • ADF
      • AutoAR
      • AutoMA
      • AutoStationarity
      • BivariateScatterPlots
      • BoxPierce
      • ChiSquaredFeaturesTable
      • ClassImbalance
      • CommonWords
      • DatasetDescription
      • DatasetSplit
      • DescriptiveStatistics
      • DickeyFullerGLS
      • Duplicates
      • EngleGrangerCoint
      • FeatureTargetCorrelationPlot
      • Hashtags
      • HighCardinality
      • HighPearsonCorrelation
      • IQROutliersBarPlot
      • IQROutliersTable
      • IsolationForestOutliers
      • JarqueBera
      • KPSS
      • LJungBox
      • LaggedCorrelationHeatmap
      • LanguageDetection
      • Mentions
      • MissingValues
      • MissingValuesBarPlot
      • MutualInformation
      • PearsonCorrelationMatrix
      • PhillipsPerronArch
      • PolarityAndSubjectivity
      • ProtectedClassesCombination
      • ProtectedClassesDescription
      • ProtectedClassesDisparity
      • ProtectedClassesThresholdOptimizer
      • Punctuations
      • RollingStatsPlot
      • RunsTest
      • ScatterPlot
      • ScoreBandDefaultRates
      • SeasonalDecompose
      • Sentiment
      • ShapiroWilk
      • Skewness
      • SpreadPlot
      • StopWords
      • TabularCategoricalBarPlots
      • TabularDateTimeHistograms
      • TabularDescriptionTables
      • TabularNumericalHistograms
      • TargetRateBarPlots
      • TextDescription
      • TimeSeriesDescription
      • TimeSeriesDescriptiveStatistics
      • TimeSeriesFrequency
      • TimeSeriesHistogram
      • TimeSeriesLinePlot
      • TimeSeriesMissingValues
      • TimeSeriesOutliers
      • TooManyZeroValues
      • Toxicity
      • UniqueRows
      • WOEBinPlots
      • WOEBinTable
      • ZivotAndrewsArch
      • nlp
    • model_validation
      • AdjustedMutualInformation
      • AdjustedRandIndex
      • AutoARIMA
      • BertScore
      • BleuScore
      • CalibrationCurve
      • ClassifierPerformance
      • ClassifierThresholdOptimization
      • ClusterCosineSimilarity
      • ClusterPerformanceMetrics
      • ClusterSizeDistribution
      • CompletenessScore
      • ConfusionMatrix
      • ContextualRecall
      • CumulativePredictionProbabilities
      • DurbinWatsonTest
      • FeatureImportance
      • FeaturesAUC
      • FowlkesMallowsScore
      • GINITable
      • HomogeneityScore
      • HyperParametersTuning
      • KMeansClustersOptimization
      • KolmogorovSmirnov
      • Lilliefors
      • MeteorScore
      • MinimumAccuracy
      • MinimumF1Score
      • MinimumROCAUCScore
      • ModelMetadata
      • ModelParameters
      • ModelPredictionResiduals
      • ModelsPerformanceComparison
      • OverfitDiagnosis
      • PermutationFeatureImportance
      • PopulationStabilityIndex
      • PrecisionRecallCurve
      • PredictionProbabilitiesHistogram
      • ROCCurve
      • RegardScore
      • RegressionCoeffs
      • RegressionErrors
      • RegressionErrorsComparison
      • RegressionFeatureSignificance
      • RegressionModelForecastPlot
      • RegressionModelForecastPlotLevels
      • RegressionModelSensitivityPlot
      • RegressionModelSummary
      • RegressionPerformance
      • RegressionPermutationFeatureImportance
      • RegressionR2Square
      • RegressionR2SquareComparison
      • RegressionResidualsPlot
      • RobustnessDiagnosis
      • RougeScore
      • SHAPGlobalImportance
      • ScoreProbabilityAlignment
      • ScorecardHistogram
      • SilhouettePlot
      • TimeSeriesPredictionWithCI
      • TimeSeriesPredictionsPlot
      • TimeSeriesR2SquareBySegments
      • TokenDisparity
      • ToxicityScore
      • TrainingTestDegradation
      • VMeasure
      • WeakspotsDiagnosis
      • sklearn
      • statsmodels
      • statsutils
    • prompt_validation
      • Bias
      • Clarity
      • Conciseness
      • Delimitation
      • NegativeInstruction
      • Robustness
      • Specificity
      • ai_powered_test
  • unit_metrics
  • vm_models

On this page

  • ScatterPlot
    • Purpose
    • Test Mechanism
    • Signs of High Risk
    • Strengths
    • Limitations
  • Edit this page
  • Report an issue
  1. tests
  2. data_validation
  3. ScatterPlot

validmind.ScatterPlot

ScatterPlot

@tags('tabular_data', 'visualization')

@tasks('classification', 'regression')

defScatterPlot(dataset):

Assesses visual relationships, patterns, and outliers among features in a dataset through scatter plot matrices.

Purpose

The ScatterPlot test aims to visually analyze a given dataset by constructing a scatter plot matrix of its numerical features. The primary goal is to uncover relationships, patterns, and outliers across different features to provide both quantitative and qualitative insights into multidimensional relationships within the dataset. This visual assessment aids in understanding the efficacy of the chosen features for model training and their suitability.

Test Mechanism

Using the Seaborn library, the ScatterPlot function creates the scatter plot matrix. The process involves retrieving all numerical columns from the dataset and generating a scatter matrix for these columns. The resulting scatter plot provides visual representations of feature relationships. The function also adjusts axis labels for readability and returns the final plot as a Matplotlib Figure object for further analysis and visualization.

Signs of High Risk

  • The emergence of non-linear or random patterns across different feature pairs, suggesting complex relationships unsuitable for linear assumptions.
  • Lack of clear patterns or clusters, indicating weak or non-existent correlations among features, which could challenge certain model types.
  • Presence of outliers, as visual outliers can adversely influence the model's performance.

Strengths

  • Provides insight into the multidimensional relationships among multiple features.
  • Assists in identifying trends, correlations, and outliers that could affect model performance.
  • Validates assumptions made during model creation, such as linearity.
  • Versatile for application in both regression and classification tasks.
  • Using Seaborn facilitates an intuitive and detailed visual exploration of data.

Limitations

  • Scatter plot matrices may become cluttered and hard to decipher as the number of features increases.
  • Primarily reveals pairwise relationships and may fail to illuminate complex interactions involving three or more features.
  • Being a visual tool, precision in quantitative analysis might be compromised.
  • Outliers not clearly visible in plots can be missed, affecting model performance.
  • Assumes that the dataset can fit into the computer's memory, which might not be valid for extremely large datasets.
RunsTest
ScoreBandDefaultRates

© Copyright 2023-2024 ValidMind Inc. All Rights Reserved.

  • Edit this page
  • Report an issue
Cookie Preferences
  • validmind.com

  • Privacy Policy

  • Terms of Use