Explore tests

View and learn more about the tests available in the ValidMind Developer Framework, including code examples and usage of key functions.

In this notebook, we’ll dive deep into the utilities available for viewing and understanding the various tests that ValidMind provides through the tests module. Whether you’re just getting started or looking for advanced tips, you’ll find clear examples and explanations to assist you every step of the way.

Before we go into the details, let’s import the describe_test and list_tests functions from the validmind.tests module. These are the two functions that can be used to easily filter through tests and view details for individual tests.

from validmind.tests import (
    describe_test,
    list_tests,
    list_tasks,
    list_tags,
    list_tasks_and_tags,
)

Contents

Listing All Tests

The list_tests function provides a convenient way to retrieve all available tests in the validmind.tests module. When invoked without any parameters, it returns a pandas DataFrame containing detailed information about each test.

list_tests()
ID Name Description Required Inputs Params
validmind.prompt_validation.Bias Bias Evaluates bias in a Large Language Model based on the order and distribution of exemplars in a prompt.... ['model.prompt'] {'min_threshold': 7}
validmind.prompt_validation.Clarity Clarity Evaluates and scores the clarity of prompts in a Large Language Model based on specified guidelines.... ['model.prompt'] {'min_threshold': 7}
validmind.prompt_validation.Specificity Specificity Evaluates and scores the specificity of prompts provided to a Large Language Model (LLM), based on clarity,... ['model.prompt'] {'min_threshold': 7}
validmind.prompt_validation.Robustness Robustness Assesses the robustness of prompts provided to a Large Language Model under varying conditions and contexts.... ['model'] {'num_tests': 10}
validmind.prompt_validation.NegativeInstruction Negative Instruction Evaluates and grades the use of affirmative, proactive language over negative instructions in LLM prompts.... ['model.prompt'] {'min_threshold': 7}
validmind.prompt_validation.Conciseness Conciseness Analyzes and grades the conciseness of prompts provided to a Large Language Model.... ['model.prompt'] {'min_threshold': 7}
validmind.prompt_validation.Delimitation Delimitation Evaluates the proper use of delimiters in prompts provided to Large Language Models.... ['model.prompt'] {'min_threshold': 7}
validmind.model_validation.ModelPredictionResiduals Model Prediction Residuals Plot the residuals and histograms for each model, and generate a summary table... ['datasets', 'models'] {'nbins': 100, 'p_value_threshold': 0.05, 'start_date': None, 'end_date': None}
validmind.model_validation.BertScore Bert Score Evaluates the quality of machine-generated text using BERTScore metrics and visualizes the results through histograms... ['dataset', 'model'] {}
validmind.model_validation.TimeSeriesPredictionsPlot Time Series Predictions Plot Plot actual vs predicted values for time series data and generate a visual comparison for each model.... ['datasets', 'models'] {}
validmind.model_validation.RegardScore Regard Score Computes and visualizes the regard score for each text instance, assessing sentiment and potential biases.... ['dataset', 'model'] {}
validmind.model_validation.BleuScore Bleu Score Evaluates the quality of machine-generated text using BLEU metrics and visualizes the results through histograms... ['dataset', 'model'] {}
validmind.model_validation.TimeSeriesPredictionWithCI Time Series Prediction With CI Plot actual vs predicted values for a time series with confidence intervals and compute breaches.... ['dataset', 'model'] {'confidence': 0.95}
validmind.model_validation.RegressionResidualsPlot Regression Residuals Plot Evaluates regression model performance using residual distribution and actual vs. predicted plots.... ['model', 'dataset'] {'bin_size': 0.1}
validmind.model_validation.FeaturesAUC Features AUC Evaluates the discriminatory power of each individual feature within a binary classification model by calculating the Area Under the Curve (AUC) for each feature separately.... ['model', 'dataset'] {'fontsize': 12, 'figure_height': 500}
validmind.model_validation.ContextualRecall Contextual Recall Evaluates a Natural Language Generation model's ability to generate contextually relevant and factually correct text, visualizing the results through histograms and bar charts, alongside compiling a comprehensive table of descriptive statistics for contextual recall scores.... ['dataset', 'model'] {}
validmind.model_validation.MeteorScore Meteor Score Computes and visualizes the METEOR score for each text generation instance, assessing translation quality.... ['dataset', 'model'] {}
validmind.model_validation.RougeScore Rouge Score Evaluates the quality of machine-generated text using ROUGE metrics and visualizes the results through histograms... ['dataset', 'model'] {'metric': 'rouge-1'}
validmind.model_validation.ModelMetadata Model Metadata Extracts and summarizes critical metadata from a machine learning model instance for comprehensive analysis.... ['model'] None
validmind.model_validation.ClusterSizeDistribution Cluster Size Distribution Compares and visualizes the distribution of cluster sizes in model predictions and actual data for assessing... ['model', 'dataset'] None
validmind.model_validation.TokenDisparity Token Disparity Evaluates the token disparity between reference and generated texts, visualizing the results through histograms... ['dataset', 'model'] {}
validmind.model_validation.ToxicityScore Toxicity Score Computes and visualizes the toxicity score for input text, true text, and predicted text, assessing content quality and potential risk.... ['dataset', 'model'] {}
validmind.model_validation.ModelMetadataComparison Model Metadata Comparison Compare metadata of different models and generate a summary table with the results.... ['models'] {}
validmind.model_validation.TimeSeriesR2SquareBySegments Time Series R2 Square By Segments Plot R-Squared values for each model over specified time segments and generate a bar chart... ['datasets', 'models'] {'segments': None}
validmind.model_validation.embeddings.CosineSimilarityComparison Cosine Similarity Comparison Computes pairwise cosine similarities between model embeddings and visualizes the results through bar charts,... ['dataset', 'models'] {}
validmind.model_validation.embeddings.EmbeddingsVisualization2D Embeddings Visualization2 D Visualizes 2D representation of text embeddings generated by a model using t-SNE technique.... ['model', 'dataset'] {'cluster_column': None, 'perplexity': 30}
validmind.model_validation.embeddings.StabilityAnalysisRandomNoise Stability Analysis Random Noise Evaluate robustness of embeddings models to random noise introduced by using... ['model', 'dataset'] {'mean_similarity_threshold': 0.7, 'probability': 0.02}
validmind.model_validation.embeddings.TSNEComponentsPairwisePlots TSNE Components Pairwise Plots Plots individual scatter plots for pairwise combinations of t-SNE components of embeddings.... ['dataset', 'model'] {'n_components': 2, 'perplexity': 30, 'title': 't-SNE'}
validmind.model_validation.embeddings.CosineSimilarityDistribution Cosine Similarity Distribution Assesses the similarity between predicted text embeddings from a model using a Cosine Similarity distribution... ['model', 'dataset'] None
validmind.model_validation.embeddings.PCAComponentsPairwisePlots PCA Components Pairwise Plots Generates scatter plots for pairwise combinations of principal component analysis (PCA) components of model embeddings.... ['dataset', 'model'] {'n_components': 3}
validmind.model_validation.embeddings.CosineSimilarityHeatmap Cosine Similarity Heatmap Generates an interactive heatmap to visualize the cosine similarities among embeddings derived from a given model.... ['dataset', 'model'] {'title': 'Cosine Similarity Matrix', 'color': 'Cosine Similarity', 'xaxis_title': 'Index', 'yaxis_title': 'Index', 'color_scale': 'Blues'}
validmind.model_validation.embeddings.StabilityAnalysisTranslation Stability Analysis Translation Evaluate robustness of embeddings models to noise introduced by translating... ['model', 'dataset'] {'source_lang': 'en', 'target_lang': 'fr', 'mean_similarity_threshold': 0.7}
validmind.model_validation.embeddings.EuclideanDistanceComparison Euclidean Distance Comparison Computes pairwise Euclidean distances between model embeddings and visualizes the results through bar charts,... ['dataset', 'models'] {}
validmind.model_validation.embeddings.ClusterDistribution Cluster Distribution Assesses the distribution of text embeddings across clusters produced by a model using KMeans clustering.... ['model', 'dataset'] {'num_clusters': 5}
validmind.model_validation.embeddings.EuclideanDistanceHeatmap Euclidean Distance Heatmap Generates an interactive heatmap to visualize the Euclidean distances among embeddings derived from a given model.... ['dataset', 'model'] {'title': 'Euclidean Distance Matrix', 'color': 'Euclidean Distance', 'xaxis_title': 'Index', 'yaxis_title': 'Index', 'color_scale': 'Blues'}
validmind.model_validation.embeddings.StabilityAnalysis Stability Analysis Base class for embeddings stability analysis tests ['model', 'dataset'] {'mean_similarity_threshold': 0.7}
validmind.model_validation.embeddings.StabilityAnalysisKeyword Stability Analysis Keyword Evaluate robustness of embeddings models to keyword swaps on the test dataset... ['model', 'dataset'] {'keyword_dict': None, 'mean_similarity_threshold': 0.7}
validmind.model_validation.embeddings.StabilityAnalysisSynonyms Stability Analysis Synonyms Evaluates the stability of text embeddings models when words in test data are replaced by their synonyms randomly.... ['model', 'dataset'] {'probability': 0.02, 'mean_similarity_threshold': 0.7}
validmind.model_validation.embeddings.DescriptiveAnalytics Descriptive Analytics Evaluates statistical properties of text embeddings in an ML model via mean, median, and standard deviation... ['model', 'dataset'] None
validmind.model_validation.ragas.ContextEntityRecall Context Entity Recall Evaluates the context entity recall for dataset entries and visualizes the results.... ['dataset'] {'contexts_column': 'contexts', 'ground_truth_column': 'ground_truth'}
validmind.model_validation.ragas.Faithfulness Faithfulness Evaluates the faithfulness of the generated answers with respect to retrieved contexts.... ['dataset'] {'answer_column': 'answer', 'contexts_column': 'contexts'}
validmind.model_validation.ragas.AspectCritique Aspect Critique Evaluates generations against the following aspects: harmfulness, maliciousness,... ['dataset'] {'question_column': 'question', 'answer_column': 'answer', 'contexts_column': 'contexts', 'aspects': ['coherence', 'conciseness', 'correctness', 'harmfulness', 'maliciousness'], 'additional_aspects': None}
validmind.model_validation.ragas.AnswerSimilarity Answer Similarity Calculates the semantic similarity between generated answers and ground truths... ['dataset'] {'answer_column': 'answer', 'ground_truth_column': 'ground_truth'}
validmind.model_validation.ragas.AnswerCorrectness Answer Correctness Evaluates the correctness of answers in a dataset with respect to the provided ground... ['dataset'] {'question_column': 'question', 'answer_column': 'answer', 'ground_truth_column': 'ground_truth'}
validmind.model_validation.ragas.ContextRecall Context Recall Context recall measures the extent to which the retrieved context aligns with the... ['dataset'] {'question_column': 'question', 'contexts_column': 'contexts', 'ground_truth_column': 'ground_truth'}
validmind.model_validation.ragas.ContextRelevancy Context Relevancy Evaluates the context relevancy metric for entries in a dataset and visualizes the... ['dataset'] {'question_column': 'question', 'contexts_column': 'contexts'}
validmind.model_validation.ragas.ContextPrecision Context Precision Context Precision is a metric that evaluates whether all of the ground-truth... ['dataset'] {'question_column': 'question', 'contexts_column': 'contexts', 'ground_truth_column': 'ground_truth'}
validmind.model_validation.ragas.AnswerRelevance Answer Relevance Assesses how pertinent the generated answer is to the given prompt.... ['dataset'] {'question_column': 'question', 'contexts_column': 'contexts', 'answer_column': 'answer'}
validmind.model_validation.sklearn.RegressionModelsPerformanceComparison Regression Models Performance Comparison Compares and evaluates the performance of multiple regression models using five different metrics: MAE, MSE, RMSE,... ['dataset', 'models'] None
validmind.model_validation.sklearn.AdjustedMutualInformation Adjusted Mutual Information Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... ['model', 'datasets'] None
validmind.model_validation.sklearn.SilhouettePlot Silhouette Plot Calculates and visualizes Silhouette Score, assessing degree of data point suitability to its cluster in ML models.... ['model', 'dataset'] None
validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis Evaluates the robustness of a machine learning model by injecting Gaussian noise to input data and measuring... ['model', 'datasets'] {'features_columns': None, 'scaling_factor_std_dev_list': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 'accuracy_decay_threshold': 4}
validmind.model_validation.sklearn.AdjustedRandIndex Adjusted Rand Index Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... ['model', 'datasets'] None
validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... ['model', 'dataset'] {'kernel_explainer_samples': 10, 'tree_or_linear_explainer_samples': 200}
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['model', 'dataset'] None
validmind.model_validation.sklearn.HomogeneityScore Homogeneity Score Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... ['model', 'datasets'] None
validmind.model_validation.sklearn.CompletenessScore Completeness Score Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... ['model', 'datasets'] None
validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis Detects and visualizes overfit regions in an ML model by comparing performance on training and test datasets.... ['model', 'datasets'] {'features_columns': None, 'cut_off_percentage': 4}
validmind.model_validation.sklearn.ClusterPerformanceMetrics Cluster Performance Metrics Evaluates the performance of clustering machine learning models using multiple established metrics.... ['model', 'datasets'] None
validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': None, 'figure_height': 1000}
validmind.model_validation.sklearn.FowlkesMallowsScore Fowlkes Mallows Score Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... ['model', 'datasets'] None
validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... ['model', 'dataset'] {'min_threshold': 0.5}
validmind.model_validation.sklearn.ClusterCosineSimilarity Cluster Cosine Similarity Measures the intra-cluster similarity of a clustering model using cosine similarity.... ['model', 'dataset'] None
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] None
validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... ['model', 'dataset'] None
validmind.model_validation.sklearn.VMeasure V Measure Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... ['model', 'datasets'] None
validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score Evaluates if the model's F1 score on the validation set meets a predefined minimum threshold.... ['model', 'dataset'] {'min_threshold': 0.5}
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] None
validmind.model_validation.sklearn.RegressionR2Square Regression R2 Square **Purpose**: The purpose of the RegressionR2Square Metric test is to measure the overall goodness-of-fit of a... ['model', 'datasets'] None
validmind.model_validation.sklearn.RegressionErrors Regression Errors **Purpose**: This metric is used to measure the performance of a regression model. It gauges the model's accuracy... ['model', 'datasets'] None
validmind.model_validation.sklearn.ClusterPerformance Cluster Performance Evaluates and compares a clustering model's performance on training and testing datasets using multiple defined... ['model', 'datasets'] None
validmind.model_validation.sklearn.FeatureImportanceComparison Feature Importance Comparison Compare feature importance scores for each model and generate a summary table... ['datasets', 'models'] {'num_features': 3}
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['model', 'datasets'] {'metrics': ['accuracy', 'precision', 'recall', 'f1'], 'max_threshold': 0.1}
validmind.model_validation.sklearn.RegressionErrorsComparison Regression Errors Comparison Compare regression error metrics for each model and generate a summary table... ['datasets', 'models'] {}
validmind.model_validation.sklearn.HyperParametersTuning Hyper Parameters Tuning Exerts exhaustive grid search to identify optimal hyperparameters for the model, improving performance.... ['model', 'dataset'] {'param_grid': None, 'scoring': None}
validmind.model_validation.sklearn.KMeansClustersOptimization K Means Clusters Optimization Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... ['model', 'dataset'] {'n_clusters': None}
validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... ['dataset', 'models'] None
validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... ['model', 'datasets'] {'features_columns': None, 'thresholds': {'accuracy': 0.75, 'precision': 0.5, 'recall': 0.5, 'f1': 0.7}}
validmind.model_validation.sklearn.RegressionR2SquareComparison Regression R2 Square Comparison Compare R-Squared and Adjusted R-Squared values for each model and generate a summary table... ['datasets', 'models'] {}
validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index Evaluates the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... ['model', 'datasets'] {'num_bins': 10, 'mode': 'fixed'}
validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy Checks if the model's prediction accuracy meets or surpasses a specified threshold.... ['model', 'dataset'] {'min_threshold': 0.7}
validmind.model_validation.statsmodels.RegressionModelsCoeffs Regression Models Coeffs Compares feature importance by evaluating and contrasting coefficients of different regression models.... ['models'] None
validmind.model_validation.statsmodels.BoxPierce Box Pierce Detects autocorrelation in time-series data through the Box-Pierce test to validate model performance.... ['dataset'] None
validmind.model_validation.statsmodels.RegressionCoeffsPlot Regression Coeffs Plot Visualizes regression coefficients with 95% confidence intervals to assess predictor variables' impact on response... ['models'] None
validmind.model_validation.statsmodels.RegressionModelSensitivityPlot Regression Model Sensitivity Plot Tests the sensitivity of a regression model to variations in independent variables by applying shocks and... ['models', 'datasets'] {'transformation': None, 'shocks': [0.1]}
validmind.model_validation.statsmodels.RegressionModelForecastPlotLevels Regression Model Forecast Plot Levels Compares and visualizes forecasted and actual values of regression models on both raw and transformed datasets.... ['models', 'datasets'] {'transformation': None}
validmind.model_validation.statsmodels.ScorecardHistogram Scorecard Histogram Creates histograms of credit scores, from both default and non-default instances, generated by a credit-risk model.... ['datasets'] {'title': 'Histogram of Scores', 'score_column': 'score'}
validmind.model_validation.statsmodels.LJungBox L Jung Box Assesses autocorrelations in dataset features by performing a Ljung-Box test on each feature.... ['dataset'] None
validmind.model_validation.statsmodels.JarqueBera Jarque Bera Assesses normality of dataset features in an ML model using the Jarque-Bera test.... ['dataset'] None
validmind.model_validation.statsmodels.KolmogorovSmirnov Kolmogorov Smirnov Executes a feature-wise Kolmogorov-Smirnov test to evaluate alignment with normal distribution in datasets.... ['dataset'] {'dist': 'norm'}
validmind.model_validation.statsmodels.ShapiroWilk Shapiro Wilk Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... ['dataset'] None
validmind.model_validation.statsmodels.CumulativePredictionProbabilities Cumulative Prediction Probabilities Visualizes cumulative probabilities of positive and negative classes for both training and testing in logistic... ['model', 'datasets'] {'title': 'Cumulative Probabilities'}
validmind.model_validation.statsmodels.RegressionFeatureSignificance Regression Feature Significance Assesses and visualizes the statistical significance of features in a set of regression models.... ['models'] {'fontsize': 10, 'p_threshold': 0.05}
validmind.model_validation.statsmodels.RegressionModelSummary Regression Model Summary Evaluates regression model performance using metrics including R-Squared, Adjusted R-Squared, MSE, and RMSE.... ['model', 'dataset'] None
validmind.model_validation.statsmodels.Lilliefors Lilliefors Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... ['dataset'] None
validmind.model_validation.statsmodels.RunsTest Runs Test Executes Runs Test on ML model to detect non-random patterns in output data sequence.... ['dataset'] None
validmind.model_validation.statsmodels.RegressionPermutationFeatureImportance Regression Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': 12, 'figure_height': 500}
validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram Prediction Probabilities Histogram Generates and visualizes histograms of the Probability of Default predictions for both positive and negative... ['model', 'datasets'] {'title': 'Histogram of Predictive Probabilities'}
validmind.model_validation.statsmodels.AutoARIMA Auto ARIMA Evaluates ARIMA models for time-series forecasting, ranking them using Bayesian and Akaike Information Criteria.... ['dataset'] None
validmind.model_validation.statsmodels.GINITable GINI Table Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... ['model', 'datasets'] None
validmind.model_validation.statsmodels.RegressionModelForecastPlot Regression Model Forecast Plot Generates plots to visually compare the forecasted outcomes of one or more regression models against actual... ['models', 'datasets'] {'start_date': None, 'end_date': None}
validmind.model_validation.statsmodels.DurbinWatsonTest Durbin Watson Test Assesses autocorrelation in time series data features using the Durbin-Watson statistic.... ['dataset'] None
validmind.data_validation.MissingValuesRisk Missing Values Risk Assesses and quantifies the risk related to missing values in a dataset used for training an ML model.... ['dataset'] None
validmind.data_validation.IQROutliersTable IQR Outliers Table Determines and summarizes outliers in numerical features using Interquartile Range method.... ['dataset'] {'features': None, 'threshold': 1.5}
validmind.data_validation.BivariateFeaturesBarPlots Bivariate Features Bar Plots Generates visual bar plots to analyze the relationship between paired features within categorical data in the model.... ['dataset'] {'features_pairs': None}
validmind.data_validation.Skewness Skewness Evaluates the skewness of numerical data in a machine learning model and checks if it falls below a set maximum... ['dataset'] {'max_threshold': 1}
validmind.data_validation.Duplicates Duplicates Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... ['dataset'] {'min_threshold': 1}
validmind.data_validation.MissingValuesBarPlot Missing Values Bar Plot Creates a bar plot showcasing the percentage of missing values in each column of the dataset with risk... ['dataset'] {'threshold': 80, 'fig_height': 600}
validmind.data_validation.DatasetDescription Dataset Description Provides comprehensive analysis and statistical summaries of each field in a machine learning model's dataset.... ['dataset'] None
validmind.data_validation.ZivotAndrewsArch Zivot Andrews Arch Evaluates the order of integration and stationarity of time series data using Zivot-Andrews unit root test.... ['dataset'] None
validmind.data_validation.ScatterPlot Scatter Plot Creates a scatter plot matrix to visually analyze feature relationships, patterns, and outliers in a dataset.... ['dataset'] None
validmind.data_validation.TimeSeriesOutliers Time Series Outliers Identifies and visualizes outliers in time-series data using z-score method.... ['dataset'] {'zscore_threshold': 3}
validmind.data_validation.TabularCategoricalBarPlots Tabular Categorical Bar Plots Generates and visualizes bar plots for each category in categorical features to evaluate dataset's composition.... ['dataset'] None
validmind.data_validation.AutoStationarity Auto Stationarity Automates Augmented Dickey-Fuller test to assess stationarity across multiple time series in a DataFrame.... ['dataset'] {'max_order': 5, 'threshold': 0.05}
validmind.data_validation.DescriptiveStatistics Descriptive Statistics Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... ['dataset'] None
validmind.data_validation.TimeSeriesDescription Time Series Description Generates a detailed analysis for the provided time series dataset.... ['dataset'] {}
validmind.data_validation.ANOVAOneWayTable ANOVA One Way Table Applies one-way ANOVA (Analysis of Variance) to identify statistically significant numerical features in the... ['dataset'] {'features': None, 'p_threshold': 0.05}
validmind.data_validation.TargetRateBarPlots Target Rate Bar Plots Generates bar plots visualizing the default rates of categorical features for a classification machine learning... ['dataset'] {'default_column': None, 'columns': None}
validmind.data_validation.PearsonCorrelationMatrix Pearson Correlation Matrix Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... ['dataset'] None
validmind.data_validation.FeatureTargetCorrelationPlot Feature Target Correlation Plot Visualizes the correlation between input features and model's target output in a color-coded horizontal bar plot.... ['dataset'] {'features': None, 'fig_height': 600}
validmind.data_validation.TabularNumericalHistograms Tabular Numerical Histograms Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... ['dataset'] None
validmind.data_validation.IsolationForestOutliers Isolation Forest Outliers Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... ['dataset'] {'random_state': 0, 'contamination': 0.1, 'features_columns': None}
validmind.data_validation.ChiSquaredFeaturesTable Chi Squared Features Table Executes Chi-Squared test for each categorical feature against a target column to assess significant association.... ['dataset'] {'cat_features': None, 'p_threshold': 0.05}
validmind.data_validation.HighCardinality High Cardinality Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... ['dataset'] {'num_threshold': 100, 'percent_threshold': 0.1, 'threshold_type': 'percent'}
validmind.data_validation.MissingValues Missing Values Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... ['dataset'] {'min_threshold': 1}
validmind.data_validation.PhillipsPerronArch Phillips Perron Arch Executes Phillips-Perron test to assess the stationarity of time series data in each ML model feature.... ['dataset'] None
validmind.data_validation.RollingStatsPlot Rolling Stats Plot This test evaluates the stationarity of time series data by plotting its rolling mean and standard deviation.... ['dataset'] {'window_size': 12}
validmind.data_validation.TabularDescriptionTables Tabular Description Tables Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... ['dataset'] None
validmind.data_validation.AutoMA Auto MA Automatically selects the optimal Moving Average (MA) order for each variable in a time series dataset based on... ['dataset'] {'max_ma_order': 3}
validmind.data_validation.UniqueRows Unique Rows Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... ['dataset'] {'min_percent_threshold': 1}
validmind.data_validation.TooManyZeroValues Too Many Zero Values Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... ['dataset'] {'max_percent_threshold': 0.03}
validmind.data_validation.HighPearsonCorrelation High Pearson Correlation Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... ['dataset'] {'max_threshold': 0.3}
validmind.data_validation.ACFandPACFPlot AC Fand PACF Plot Analyzes time series data using Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to... ['dataset'] None
validmind.data_validation.BivariateHistograms Bivariate Histograms Generates bivariate histograms for paired features, aiding in visual inspection of categorical variables'... ['dataset'] {'features_pairs': None, 'target_filter': None}
validmind.data_validation.WOEBinTable WOE Bin Table Calculates and assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature in a ML model.... ['dataset'] {'breaks_adj': None}
validmind.data_validation.HeatmapFeatureCorrelations Heatmap Feature Correlations Creates a heatmap to visually represent correlation patterns between pairs of numerical features in a dataset.... ['dataset'] {'declutter': None, 'fontsize': None, 'num_features': None}
validmind.data_validation.TimeSeriesFrequency Time Series Frequency Evaluates consistency of time series data frequency and generates a frequency plot.... ['dataset'] None
validmind.data_validation.DatasetSplit Dataset Split Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... ['datasets'] None
validmind.data_validation.SpreadPlot Spread Plot Visualizes the spread relationship between pairs of time-series variables in a dataset, thereby aiding in... ['dataset'] None
validmind.data_validation.TimeSeriesLinePlot Time Series Line Plot Generates and analyses time-series data through line plots revealing trends, patterns, anomalies over time.... ['dataset'] None
validmind.data_validation.KPSS KPSS Executes KPSS unit root test to validate stationarity of time-series data in machine learning model.... ['dataset'] None
validmind.data_validation.AutoSeasonality Auto Seasonality Automatically identifies and quantifies optimal seasonality in time series data to improve forecasting model... ['dataset'] {'min_period': 1, 'max_period': 4}
validmind.data_validation.BivariateScatterPlots Bivariate Scatter Plots Generates bivariate scatterplots to visually inspect relationships between pairs of predictor variables in machine... ['dataset'] {'selected_columns': None}
validmind.data_validation.EngleGrangerCoint Engle Granger Coint Validates co-integration in pairs of time series data using the Engle-Granger test and classifies them as... ['dataset'] {'threshold': 0.05}
validmind.data_validation.TimeSeriesMissingValues Time Series Missing Values Validates time-series data quality by confirming the count of missing values is below a certain threshold.... ['dataset'] {'min_threshold': 1}
validmind.data_validation.TimeSeriesHistogram Time Series Histogram Visualizes distribution of time-series data using histograms and Kernel Density Estimation (KDE) lines.... ['dataset'] {'nbins': 30}
validmind.data_validation.LaggedCorrelationHeatmap Lagged Correlation Heatmap Assesses and visualizes correlation between target variable and lagged independent variables in a time-series... ['dataset'] None
validmind.data_validation.SeasonalDecompose Seasonal Decompose Decomposes dataset features into observed, trend, seasonal, and residual components to identify patterns and... ['dataset'] {'seasonal_model': 'additive'}
validmind.data_validation.WOEBinPlots WOE Bin Plots Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... ['dataset'] {'breaks_adj': None, 'fig_height': 600, 'fig_width': 500}
validmind.data_validation.ClassImbalance Class Imbalance Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... ['dataset'] {'min_percent_threshold': 10}
validmind.data_validation.IQROutliersBarPlot IQR Outliers Bar Plot Visualizes outlier distribution across percentiles in numerical data using Interquartile Range (IQR) method.... ['dataset'] {'threshold': 1.5, 'num_features': None, 'fig_width': 800}
validmind.data_validation.DFGLSArch DFGLS Arch Executes Dickey-Fuller GLS metric to determine order of integration and check stationarity in time series data.... ['dataset'] None
validmind.data_validation.TimeSeriesDescriptiveStatistics Time Series Descriptive Statistics Generates a detailed table of descriptive statistics for the provided time series dataset.... ['dataset'] {}
validmind.data_validation.AutoAR Auto AR Automatically identifies the optimal Autoregressive (AR) order for a time series using BIC and AIC criteria.... ['dataset'] {'max_ar_order': 3}
validmind.data_validation.TabularDateTimeHistograms Tabular Date Time Histograms Generates histograms to provide graphical insight into the distribution of time intervals in model's datetime data.... ['dataset'] None
validmind.data_validation.ADF ADF Assesses the stationarity of a time series dataset using the Augmented Dickey-Fuller (ADF) test.... ['dataset'] None
validmind.data_validation.nlp.Toxicity Toxicity Analyzes the toxicity of text data within a dataset using a pre-trained toxicity model.... ['dataset'] {}
validmind.data_validation.nlp.PolarityAndSubjectivity Polarity And Subjectivity Analyzes the polarity and subjectivity of text data within a dataset.... ['dataset'] {}
validmind.data_validation.nlp.Punctuations Punctuations Analyzes and visualizes the frequency distribution of punctuation usage in a given text dataset.... ['dataset'] None
validmind.data_validation.nlp.Sentiment Sentiment Analyzes the sentiment of text data within a dataset using the VADER sentiment analysis tool.... ['dataset'] {}
validmind.data_validation.nlp.CommonWords Common Words Identifies and visualizes the 40 most frequent non-stopwords in a specified text column within a dataset.... ['dataset'] None
validmind.data_validation.nlp.Hashtags Hashtags Assesses hashtag frequency in a text column, highlighting usage trends and potential dataset bias or spam.... ['dataset'] {'top_hashtags': 25}
validmind.data_validation.nlp.LanguageDetection Language Detection Detects the language of each text entry in a dataset and visualizes the distribution of languages... ['dataset'] {}
validmind.data_validation.nlp.Mentions Mentions Calculates and visualizes frequencies of '@' prefixed mentions in a text-based dataset for NLP model analysis.... ['dataset'] {'top_mentions': 25}
validmind.data_validation.nlp.TextDescription Text Description Performs comprehensive textual analysis on a dataset using NLTK, evaluating various parameters and generating... ['dataset'] {'unwanted_tokens': {' ', 'dollar', "''", 's', 'us', 'ms', "s'", '``', 'mr', 'mrs', "'s", 'dr'}, 'num_top_words': 3, 'lang': 'english'}
validmind.data_validation.nlp.StopWords Stop Words Evaluates and visualizes the frequency of English stop words in a text dataset against a defined threshold.... ['dataset'] {'min_percent_threshold': 0.5, 'num_words': 25}

Understanding Tags and Task Types

Effectively using ValidMind’s tests involves a deep understanding of its ‘tags’ and ‘task types’. Here’s a breakdown:

  • Task Types: Represent the kind of modeling task associated with a test. For instance:

    • classification: Works with Classification Models and Datasets
    • regression: Works with Regression Models and Datasets
    • text classification: Works with Text Classification Models and Datasets
    • text summarization: Works with Text Summarization Models and Datasets
  • Tags: Free-form descriptors providing more details about the test, what data and models the test is compatible with and what category the test falls into etc. Some examples include:

    • llm: Tests that work with Large Language Models
    • nlp: Tests relevant for natural language processing.
    • binary_classification: Tests for binary classification tasks.
    • forecasting: Tests for forecasting and time-series analysis.
    • tabular_data: Tests for tabular data like CSVs and Excel spreadsheets.

You can use the functions list_tasks() and list_tags() to view all the tasks and tags used for classifying all the tests available in the developer framework:

list_tasks()
['text_qa',
 'time_series_forecasting',
 'text_generation',
 'text_summarization',
 'nlp',
 'text_classification',
 'visualization',
 'classification',
 'feature_extraction',
 'regression',
 'residual_analysis',
 'clustering']
list_tags()
['statsmodels',
 'anomaly_detection',
 'text_data',
 'data_quality',
 'ragas',
 'kmeans',
 'stationarity',
 'seasonality',
 'model_metadata',
 'zero_shot',
 'embeddings',
 'tabular_data',
 'qualitative',
 'forecasting',
 'correlation',
 'model_interpretation',
 'model_comparison',
 'feature_importance',
 'AUC',
 'analysis',
 'time_series_data',
 'rag_performance',
 'text_embeddings',
 'model_explainability',
 'data_validation',
 'multiclass_classification',
 'binary_classification',
 'nlp',
 'data_distribution',
 'sklearn',
 'visualization',
 'few_shot',
 'numerical_data',
 'model_predictions',
 'frequency_analysis',
 'model_performance',
 'senstivity_analysis',
 'logistic_regression',
 'unit_root_test',
 'model_selection',
 'dimensionality_reduction',
 'metadata',
 'llm',
 'statistical_test',
 'retrieval_performance',
 'model_training',
 'model_diagnosis',
 'categorical_data',
 'regression',
 'risk_analysis',
 'credit_risk']

If you want to see which tags correspond to which task type, you can use the function list_tasks_and_tags():

list_tasks_and_tags()
Task Tags
text_classification text_data, ragas, model_metadata, zero_shot, tabular_data, model_comparison, feature_importance, time_series_data, multiclass_classification, binary_classification, nlp, sklearn, visualization, few_shot, frequency_analysis, model_performance, llm, retrieval_performance, model_diagnosis
text_summarization time_series_data, rag_performance, dimensionality_reduction, text_data, qualitative, ragas, nlp, llm, model_metadata, visualization, few_shot, retrieval_performance, zero_shot, frequency_analysis, embeddings, tabular_data
residual_analysis regression
visualization regression
regression statsmodels, text_data, data_quality, stationarity, seasonality, model_metadata, tabular_data, forecasting, correlation, model_interpretation, model_comparison, feature_importance, analysis, time_series_data, model_explainability, data_validation, data_distribution, sklearn, visualization, numerical_data, model_predictions, model_performance, senstivity_analysis, unit_root_test, model_selection, metadata, statistical_test, model_training, categorical_data, risk_analysis
time_series_forecasting model_explainability, metadata, data_validation, sklearn, visualization, model_training, model_predictions, model_performance
classification statsmodels, anomaly_detection, text_data, data_quality, model_metadata, tabular_data, correlation, model_comparison, feature_importance, AUC, time_series_data, multiclass_classification, binary_classification, data_distribution, sklearn, visualization, numerical_data, model_performance, logistic_regression, statistical_test, model_diagnosis, categorical_data, risk_analysis, credit_risk
clustering sklearn, model_performance, kmeans
text_qa rag_performance, dimensionality_reduction, qualitative, ragas, llm, visualization, retrieval_performance, embeddings
text_generation rag_performance, dimensionality_reduction, qualitative, ragas, llm, visualization, retrieval_performance, embeddings
feature_extraction llm, text_embeddings, visualization, text_data
nlp data_validation, nlp, text_data

Searching for Specific Tests using tags and tasks

While listing all tests is valuable, there are times when you need to narrow down your search. The list_tests function offers filter, task, and tags parameters to assist in this.

If you’re targeting a specific test or tests that match a particular task type, the filter parameter comes in handy. For example, to list tests that are compatible with ‘sklearn’ models:

list_tests(filter="sklearn")
ID Name Description Required Inputs Params
validmind.model_validation.ClusterSizeDistribution Cluster Size Distribution Compares and visualizes the distribution of cluster sizes in model predictions and actual data for assessing... ['model', 'dataset'] None
validmind.model_validation.TimeSeriesR2SquareBySegments Time Series R2 Square By Segments Plot R-Squared values for each model over specified time segments and generate a bar chart... ['datasets', 'models'] {'segments': None}
validmind.model_validation.sklearn.RegressionModelsPerformanceComparison Regression Models Performance Comparison Compares and evaluates the performance of multiple regression models using five different metrics: MAE, MSE, RMSE,... ['dataset', 'models'] None
validmind.model_validation.sklearn.AdjustedMutualInformation Adjusted Mutual Information Evaluates clustering model performance by measuring mutual information between true and predicted labels, adjusting... ['model', 'datasets'] None
validmind.model_validation.sklearn.SilhouettePlot Silhouette Plot Calculates and visualizes Silhouette Score, assessing degree of data point suitability to its cluster in ML models.... ['model', 'dataset'] None
validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis Evaluates the robustness of a machine learning model by injecting Gaussian noise to input data and measuring... ['model', 'datasets'] {'features_columns': None, 'scaling_factor_std_dev_list': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 'accuracy_decay_threshold': 4}
validmind.model_validation.sklearn.AdjustedRandIndex Adjusted Rand Index Measures the similarity between two data clusters using the Adjusted Rand Index (ARI) metric in clustering machine... ['model', 'datasets'] None
validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... ['model', 'dataset'] {'kernel_explainer_samples': 10, 'tree_or_linear_explainer_samples': 200}
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['model', 'dataset'] None
validmind.model_validation.sklearn.HomogeneityScore Homogeneity Score Assesses clustering homogeneity by comparing true and predicted labels, scoring from 0 (heterogeneous) to 1... ['model', 'datasets'] None
validmind.model_validation.sklearn.CompletenessScore Completeness Score Evaluates a clustering model's capacity to categorize instances from a single class into the same cluster.... ['model', 'datasets'] None
validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis Detects and visualizes overfit regions in an ML model by comparing performance on training and test datasets.... ['model', 'datasets'] {'features_columns': None, 'cut_off_percentage': 4}
validmind.model_validation.sklearn.ClusterPerformanceMetrics Cluster Performance Metrics Evaluates the performance of clustering machine learning models using multiple established metrics.... ['model', 'datasets'] None
validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': None, 'figure_height': 1000}
validmind.model_validation.sklearn.FowlkesMallowsScore Fowlkes Mallows Score Evaluates the similarity between predicted and actual cluster assignments in a model using the Fowlkes-Mallows... ['model', 'datasets'] None
validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... ['model', 'dataset'] {'min_threshold': 0.5}
validmind.model_validation.sklearn.ClusterCosineSimilarity Cluster Cosine Similarity Measures the intra-cluster similarity of a clustering model using cosine similarity.... ['model', 'dataset'] None
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] None
validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... ['model', 'dataset'] None
validmind.model_validation.sklearn.VMeasure V Measure Evaluates homogeneity and completeness of a clustering model using the V Measure Score.... ['model', 'datasets'] None
validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score Evaluates if the model's F1 score on the validation set meets a predefined minimum threshold.... ['model', 'dataset'] {'min_threshold': 0.5}
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] None
validmind.model_validation.sklearn.RegressionR2Square Regression R2 Square **Purpose**: The purpose of the RegressionR2Square Metric test is to measure the overall goodness-of-fit of a... ['model', 'datasets'] None
validmind.model_validation.sklearn.RegressionErrors Regression Errors **Purpose**: This metric is used to measure the performance of a regression model. It gauges the model's accuracy... ['model', 'datasets'] None
validmind.model_validation.sklearn.ClusterPerformance Cluster Performance Evaluates and compares a clustering model's performance on training and testing datasets using multiple defined... ['model', 'datasets'] None
validmind.model_validation.sklearn.FeatureImportanceComparison Feature Importance Comparison Compare feature importance scores for each model and generate a summary table... ['datasets', 'models'] {'num_features': 3}
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['model', 'datasets'] {'metrics': ['accuracy', 'precision', 'recall', 'f1'], 'max_threshold': 0.1}
validmind.model_validation.sklearn.RegressionErrorsComparison Regression Errors Comparison Compare regression error metrics for each model and generate a summary table... ['datasets', 'models'] {}
validmind.model_validation.sklearn.HyperParametersTuning Hyper Parameters Tuning Exerts exhaustive grid search to identify optimal hyperparameters for the model, improving performance.... ['model', 'dataset'] {'param_grid': None, 'scoring': None}
validmind.model_validation.sklearn.KMeansClustersOptimization K Means Clusters Optimization Optimizes the number of clusters in K-means models using Elbow and Silhouette methods.... ['model', 'dataset'] {'n_clusters': None}
validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... ['dataset', 'models'] None
validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... ['model', 'datasets'] {'features_columns': None, 'thresholds': {'accuracy': 0.75, 'precision': 0.5, 'recall': 0.5, 'f1': 0.7}}
validmind.model_validation.sklearn.RegressionR2SquareComparison Regression R2 Square Comparison Compare R-Squared and Adjusted R-Squared values for each model and generate a summary table... ['datasets', 'models'] {}
validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index Evaluates the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... ['model', 'datasets'] {'num_bins': 10, 'mode': 'fixed'}
validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy Checks if the model's prediction accuracy meets or surpasses a specified threshold.... ['model', 'dataset'] {'min_threshold': 0.7}

The task parameter is designed for pinpointing tests that align with a specific task type. For instance, to find tests tailored for ‘classification’ tasks:

list_tests(task="classification")
ID Name Description Required Inputs Params
validmind.model_validation.FeaturesAUC Features AUC Evaluates the discriminatory power of each individual feature within a binary classification model by calculating the Area Under the Curve (AUC) for each feature separately.... ['model', 'dataset'] {'fontsize': 12, 'figure_height': 500}
validmind.model_validation.ModelMetadata Model Metadata Extracts and summarizes critical metadata from a machine learning model instance for comprehensive analysis.... ['model'] None
validmind.model_validation.sklearn.RobustnessDiagnosis Robustness Diagnosis Evaluates the robustness of a machine learning model by injecting Gaussian noise to input data and measuring... ['model', 'datasets'] {'features_columns': None, 'scaling_factor_std_dev_list': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 'accuracy_decay_threshold': 4}
validmind.model_validation.sklearn.SHAPGlobalImportance SHAP Global Importance Evaluates and visualizes global feature importance using SHAP values for model explanation and risk identification.... ['model', 'dataset'] {'kernel_explainer_samples': 10, 'tree_or_linear_explainer_samples': 200}
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['model', 'dataset'] None
validmind.model_validation.sklearn.OverfitDiagnosis Overfit Diagnosis Detects and visualizes overfit regions in an ML model by comparing performance on training and test datasets.... ['model', 'datasets'] {'features_columns': None, 'cut_off_percentage': 4}
validmind.model_validation.sklearn.PermutationFeatureImportance Permutation Feature Importance Assesses the significance of each feature in a model by evaluating the impact on model performance when feature... ['model', 'dataset'] {'fontsize': None, 'figure_height': 1000}
validmind.model_validation.sklearn.MinimumROCAUCScore Minimum ROCAUC Score Validates model by checking if the ROC AUC score meets or surpasses a specified threshold.... ['model', 'dataset'] {'min_threshold': 0.5}
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] None
validmind.model_validation.sklearn.ClassifierPerformance Classifier Performance Evaluates performance of binary or multiclass classification models using precision, recall, F1-Score, accuracy,... ['model', 'dataset'] None
validmind.model_validation.sklearn.MinimumF1Score Minimum F1 Score Evaluates if the model's F1 score on the validation set meets a predefined minimum threshold.... ['model', 'dataset'] {'min_threshold': 0.5}
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] None
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['model', 'datasets'] {'metrics': ['accuracy', 'precision', 'recall', 'f1'], 'max_threshold': 0.1}
validmind.model_validation.sklearn.HyperParametersTuning Hyper Parameters Tuning Exerts exhaustive grid search to identify optimal hyperparameters for the model, improving performance.... ['model', 'dataset'] {'param_grid': None, 'scoring': None}
validmind.model_validation.sklearn.ModelsPerformanceComparison Models Performance Comparison Evaluates and compares the performance of multiple Machine Learning models using various metrics like accuracy,... ['dataset', 'models'] None
validmind.model_validation.sklearn.WeakspotsDiagnosis Weakspots Diagnosis Identifies and visualizes weak spots in a machine learning model's performance across various sections of the... ['model', 'datasets'] {'features_columns': None, 'thresholds': {'accuracy': 0.75, 'precision': 0.5, 'recall': 0.5, 'f1': 0.7}}
validmind.model_validation.sklearn.PopulationStabilityIndex Population Stability Index Evaluates the Population Stability Index (PSI) to quantify the stability of an ML model's predictions across... ['model', 'datasets'] {'num_bins': 10, 'mode': 'fixed'}
validmind.model_validation.sklearn.MinimumAccuracy Minimum Accuracy Checks if the model's prediction accuracy meets or surpasses a specified threshold.... ['model', 'dataset'] {'min_threshold': 0.7}
validmind.model_validation.statsmodels.ScorecardHistogram Scorecard Histogram Creates histograms of credit scores, from both default and non-default instances, generated by a credit-risk model.... ['datasets'] {'title': 'Histogram of Scores', 'score_column': 'score'}
validmind.model_validation.statsmodels.JarqueBera Jarque Bera Assesses normality of dataset features in an ML model using the Jarque-Bera test.... ['dataset'] None
validmind.model_validation.statsmodels.KolmogorovSmirnov Kolmogorov Smirnov Executes a feature-wise Kolmogorov-Smirnov test to evaluate alignment with normal distribution in datasets.... ['dataset'] {'dist': 'norm'}
validmind.model_validation.statsmodels.ShapiroWilk Shapiro Wilk Evaluates feature-wise normality of training data using the Shapiro-Wilk test.... ['dataset'] None
validmind.model_validation.statsmodels.CumulativePredictionProbabilities Cumulative Prediction Probabilities Visualizes cumulative probabilities of positive and negative classes for both training and testing in logistic... ['model', 'datasets'] {'title': 'Cumulative Probabilities'}
validmind.model_validation.statsmodels.Lilliefors Lilliefors Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.... ['dataset'] None
validmind.model_validation.statsmodels.RunsTest Runs Test Executes Runs Test on ML model to detect non-random patterns in output data sequence.... ['dataset'] None
validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram Prediction Probabilities Histogram Generates and visualizes histograms of the Probability of Default predictions for both positive and negative... ['model', 'datasets'] {'title': 'Histogram of Predictive Probabilities'}
validmind.model_validation.statsmodels.GINITable GINI Table Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... ['model', 'datasets'] None
validmind.data_validation.MissingValuesRisk Missing Values Risk Assesses and quantifies the risk related to missing values in a dataset used for training an ML model.... ['dataset'] None
validmind.data_validation.IQROutliersTable IQR Outliers Table Determines and summarizes outliers in numerical features using Interquartile Range method.... ['dataset'] {'features': None, 'threshold': 1.5}
validmind.data_validation.BivariateFeaturesBarPlots Bivariate Features Bar Plots Generates visual bar plots to analyze the relationship between paired features within categorical data in the model.... ['dataset'] {'features_pairs': None}
validmind.data_validation.Skewness Skewness Evaluates the skewness of numerical data in a machine learning model and checks if it falls below a set maximum... ['dataset'] {'max_threshold': 1}
validmind.data_validation.Duplicates Duplicates Tests dataset for duplicate entries, ensuring model reliability via data quality verification.... ['dataset'] {'min_threshold': 1}
validmind.data_validation.MissingValuesBarPlot Missing Values Bar Plot Creates a bar plot showcasing the percentage of missing values in each column of the dataset with risk... ['dataset'] {'threshold': 80, 'fig_height': 600}
validmind.data_validation.DatasetDescription Dataset Description Provides comprehensive analysis and statistical summaries of each field in a machine learning model's dataset.... ['dataset'] None
validmind.data_validation.ScatterPlot Scatter Plot Creates a scatter plot matrix to visually analyze feature relationships, patterns, and outliers in a dataset.... ['dataset'] None
validmind.data_validation.TabularCategoricalBarPlots Tabular Categorical Bar Plots Generates and visualizes bar plots for each category in categorical features to evaluate dataset's composition.... ['dataset'] None
validmind.data_validation.DescriptiveStatistics Descriptive Statistics Performs a detailed descriptive statistical analysis of both numerical and categorical data within a model's... ['dataset'] None
validmind.data_validation.ANOVAOneWayTable ANOVA One Way Table Applies one-way ANOVA (Analysis of Variance) to identify statistically significant numerical features in the... ['dataset'] {'features': None, 'p_threshold': 0.05}
validmind.data_validation.TargetRateBarPlots Target Rate Bar Plots Generates bar plots visualizing the default rates of categorical features for a classification machine learning... ['dataset'] {'default_column': None, 'columns': None}
validmind.data_validation.PearsonCorrelationMatrix Pearson Correlation Matrix Evaluates linear dependency between numerical variables in a dataset via a Pearson Correlation coefficient heat map.... ['dataset'] None
validmind.data_validation.FeatureTargetCorrelationPlot Feature Target Correlation Plot Visualizes the correlation between input features and model's target output in a color-coded horizontal bar plot.... ['dataset'] {'features': None, 'fig_height': 600}
validmind.data_validation.TabularNumericalHistograms Tabular Numerical Histograms Generates histograms for each numerical feature in a dataset to provide visual insights into data distribution and... ['dataset'] None
validmind.data_validation.IsolationForestOutliers Isolation Forest Outliers Detects outliers in a dataset using the Isolation Forest algorithm and visualizes results through scatter plots.... ['dataset'] {'random_state': 0, 'contamination': 0.1, 'features_columns': None}
validmind.data_validation.ChiSquaredFeaturesTable Chi Squared Features Table Executes Chi-Squared test for each categorical feature against a target column to assess significant association.... ['dataset'] {'cat_features': None, 'p_threshold': 0.05}
validmind.data_validation.HighCardinality High Cardinality Assesses the number of unique values in categorical columns to detect high cardinality and potential overfitting.... ['dataset'] {'num_threshold': 100, 'percent_threshold': 0.1, 'threshold_type': 'percent'}
validmind.data_validation.MissingValues Missing Values Evaluates dataset quality by ensuring missing value ratio across all features does not exceed a set threshold.... ['dataset'] {'min_threshold': 1}
validmind.data_validation.TabularDescriptionTables Tabular Description Tables Summarizes key descriptive statistics for numerical, categorical, and datetime variables in a dataset.... ['dataset'] None
validmind.data_validation.UniqueRows Unique Rows Verifies the diversity of the dataset by ensuring that the count of unique rows exceeds a prescribed threshold.... ['dataset'] {'min_percent_threshold': 1}
validmind.data_validation.TooManyZeroValues Too Many Zero Values Identifies numerical columns in a dataset that contain an excessive number of zero values, defined by a threshold... ['dataset'] {'max_percent_threshold': 0.03}
validmind.data_validation.HighPearsonCorrelation High Pearson Correlation Identifies highly correlated feature pairs in a dataset suggesting feature redundancy or multicollinearity.... ['dataset'] {'max_threshold': 0.3}
validmind.data_validation.BivariateHistograms Bivariate Histograms Generates bivariate histograms for paired features, aiding in visual inspection of categorical variables'... ['dataset'] {'features_pairs': None, 'target_filter': None}
validmind.data_validation.WOEBinTable WOE Bin Table Calculates and assesses the Weight of Evidence (WoE) and Information Value (IV) of each feature in a ML model.... ['dataset'] {'breaks_adj': None}
validmind.data_validation.HeatmapFeatureCorrelations Heatmap Feature Correlations Creates a heatmap to visually represent correlation patterns between pairs of numerical features in a dataset.... ['dataset'] {'declutter': None, 'fontsize': None, 'num_features': None}
validmind.data_validation.DatasetSplit Dataset Split Evaluates and visualizes the distribution proportions among training, testing, and validation datasets of an ML... ['datasets'] None
validmind.data_validation.BivariateScatterPlots Bivariate Scatter Plots Generates bivariate scatterplots to visually inspect relationships between pairs of predictor variables in machine... ['dataset'] {'selected_columns': None}
validmind.data_validation.WOEBinPlots WOE Bin Plots Generates visualizations of Weight of Evidence (WoE) and Information Value (IV) for understanding predictive power... ['dataset'] {'breaks_adj': None, 'fig_height': 600, 'fig_width': 500}
validmind.data_validation.ClassImbalance Class Imbalance Evaluates and quantifies class distribution imbalance in a dataset used by a machine learning model.... ['dataset'] {'min_percent_threshold': 10}
validmind.data_validation.IQROutliersBarPlot IQR Outliers Bar Plot Visualizes outlier distribution across percentiles in numerical data using Interquartile Range (IQR) method.... ['dataset'] {'threshold': 1.5, 'num_features': None, 'fig_width': 800}
validmind.data_validation.TabularDateTimeHistograms Tabular Date Time Histograms Generates histograms to provide graphical insight into the distribution of time intervals in model's datetime data.... ['dataset'] None

The tags parameter facilitates searching tests by their tags. For instance, if you’re interested in only tests associated designed for model_performance that produce a plot (denoted by the visualization tag)

list_tests(tags=["model_performance", "visualization"])
ID Name Description Required Inputs Params
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['model', 'dataset'] None
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] None
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] None
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['model', 'datasets'] {'metrics': ['accuracy', 'precision', 'recall', 'f1'], 'max_threshold': 0.1}
validmind.model_validation.statsmodels.GINITable GINI Table Evaluates classification model performance using AUC, GINI, and KS metrics for training and test datasets.... ['model', 'datasets'] None

The above parameters can be combined to create complex queries. For instance, to find tests that are compatible with ‘sklearn’ models, designed for ‘classification’ tasks, and produce a plot:

list_tests(
    tags=["model_performance", "visualization", "sklearn"], task="classification"
)
ID Name Description Required Inputs Params
validmind.model_validation.sklearn.ConfusionMatrix Confusion Matrix Evaluates and visually represents the classification ML model's predictive performance using a Confusion Matrix... ['model', 'dataset'] None
validmind.model_validation.sklearn.PrecisionRecallCurve Precision Recall Curve Evaluates the precision-recall trade-off for binary classification models and visualizes the Precision-Recall curve.... ['model', 'dataset'] None
validmind.model_validation.sklearn.ROCCurve ROC Curve Evaluates binary classification model performance by generating and plotting the Receiver Operating Characteristic... ['model', 'dataset'] None
validmind.model_validation.sklearn.TrainingTestDegradation Training Test Degradation Tests if model performance degradation between training and test datasets exceeds a predefined threshold.... ['model', 'datasets'] {'metrics': ['accuracy', 'precision', 'recall', 'f1'], 'max_threshold': 0.1}

Programmatic Use

To work with a specific set of tests programmatically, you can store the results in a variable. For instance, let’s list all tests that are designed for Text Summarization tests and store them in text_summarization_tests for further use.

text_summarization_tests = list_tests(task="text_summarization", pretty=False)
text_summarization_tests
['validmind.prompt_validation.Bias',
 'validmind.prompt_validation.Clarity',
 'validmind.prompt_validation.Specificity',
 'validmind.prompt_validation.Robustness',
 'validmind.prompt_validation.NegativeInstruction',
 'validmind.prompt_validation.Conciseness',
 'validmind.prompt_validation.Delimitation',
 'validmind.model_validation.BertScore',
 'validmind.model_validation.RegardScore',
 'validmind.model_validation.BleuScore',
 'validmind.model_validation.ContextualRecall',
 'validmind.model_validation.MeteorScore',
 'validmind.model_validation.RougeScore',
 'validmind.model_validation.ModelMetadata',
 'validmind.model_validation.TokenDisparity',
 'validmind.model_validation.ToxicityScore',
 'validmind.model_validation.embeddings.CosineSimilarityComparison',
 'validmind.model_validation.embeddings.TSNEComponentsPairwisePlots',
 'validmind.model_validation.embeddings.PCAComponentsPairwisePlots',
 'validmind.model_validation.embeddings.CosineSimilarityHeatmap',
 'validmind.model_validation.embeddings.EuclideanDistanceComparison',
 'validmind.model_validation.embeddings.EuclideanDistanceHeatmap',
 'validmind.model_validation.ragas.ContextEntityRecall',
 'validmind.model_validation.ragas.Faithfulness',
 'validmind.model_validation.ragas.AspectCritique',
 'validmind.model_validation.ragas.AnswerSimilarity',
 'validmind.model_validation.ragas.AnswerCorrectness',
 'validmind.model_validation.ragas.ContextRecall',
 'validmind.model_validation.ragas.ContextRelevancy',
 'validmind.model_validation.ragas.ContextPrecision',
 'validmind.model_validation.ragas.AnswerRelevance',
 'validmind.data_validation.DatasetDescription',
 'validmind.data_validation.DatasetSplit',
 'validmind.data_validation.nlp.Punctuations',
 'validmind.data_validation.nlp.CommonWords',
 'validmind.data_validation.nlp.Hashtags',
 'validmind.data_validation.nlp.LanguageDetection',
 'validmind.data_validation.nlp.Mentions',
 'validmind.data_validation.nlp.TextDescription',
 'validmind.data_validation.nlp.StopWords']

Delving into Test Details with describe_test

After identifying a set of potential tests, you might want to explore the specifics of an individual test. The describe_test function provides a deep dive into the details of a test. It reveals the test name, description, ID, test type, and required inputs. Below, we showcase how to describe a test using its ID:

describe_test("validmind.model_validation.sklearn.OverfitDiagnosis")

Next steps

By harnessing the functionalities presented in this guide, you should be able to easily list and filter through all of ValidMind’s available tests and find those you are interested in running against your model and/or dataset. The next step is to take the IDs of the tests you’d like to run and either create a test suite for reuse or just run them directly to try them out. See the other notebooks for a tutorial on how to do both.

Discover more learning resources

We offer many interactive notebooks to help you document models:

Or, visit our documentation to learn more about ValidMind.